Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 26(11)2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34199757

RESUMO

The innovative strategy of using nanoparticles in radiotherapy has become an exciting topic due to the possibility of simultaneously improving local efficiency of radiation in tumors and real-time monitoring of the delivered doses. Yttrium oxide (Y2O3) nanoparticles (NPs) are used in material science to prepare phosphors for various applications including X-ray induced photodynamic therapy and in situ nano-dosimetry, but few available reports only addressed the effect induced in cells by combined exposure to different doses of superficial X-ray radiation and nanoparticles. Herein, we analyzed changes induced in melanoma cells by exposure to different doses of X-ray radiation and various concentrations of Y2O3 NPs. By evaluation of cell mitochondrial activity and production of intracellular reactive oxygen species (ROS), we estimated that 2, 4, and 6 Gy X-ray radiation doses are visibly altering the cells by inducing ROS production with increasing the dose while at 6 Gy the mitochondrial activity is also affected. Separately, high-concentrated solutions of 25, 50, and 100 µg/mL Y2O3 NPs were also found to affect the cells by inducing ROS production with the increase of concentration. Additionally, the colony-forming units assay evidenced a rather synergic effect of NPs and radiation. By adding the NPs to cells before irradiation, a decrease of the number of proliferating cell colonies was observed with increase of X-ray dose. DNA damage was evidenced by quantifying the γ-H2AX foci for cells treated with Y2O3 NPs and exposed to superficial X-ray radiation. Proteomic profile confirmed that a combined effect of 50 µg/mL Y2O3 NPs and 6 Gy X-ray dose induced mitochondria alterations and DNA changes in melanoma cells.


Assuntos
Melanoma/metabolismo , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ítrio/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Relação Dose-Resposta à Radiação , Humanos , Melanoma/terapia , Mitocôndrias/efeitos dos fármacos , Nanopartículas , Tamanho da Partícula , Fotoquimioterapia , Proteômica
2.
Biomolecules ; 11(6)2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34205550

RESUMO

Lab-on-a-chip (LOC) and organ-on-a-chip (OOC) devices are highly versatile platforms that enable miniaturization and advanced controlled laboratory functions (i.e., microfluidics, advanced optical or electrical recordings, high-throughput screening). The manufacturing advancements of LOCs/OOCs for biomedical applications and their current limitations are briefly discussed. Multiple studies have exploited the advantages of mimicking organs or tissues on a chip. Among these, we focused our attention on the brain-on-a-chip, blood-brain barrier (BBB)-on-a-chip, and neurovascular unit (NVU)-on-a-chip applications. Mainly, we review the latest developments of brain-on-a-chip, BBB-on-a-chip, and NVU-on-a-chip devices and their use as testing platforms for high-throughput pharmacological screening. In particular, we analyze the most important contributions of these studies in the field of neurodegenerative diseases and their relevance in translational personalized medicine.


Assuntos
Barreira Hematoencefálica/metabolismo , Ensaios de Triagem em Larga Escala , Dispositivos Lab-On-A-Chip , Doenças Neurodegenerativas/tratamento farmacológico , Barreira Hematoencefálica/patologia , Avaliação Pré-Clínica de Medicamentos , Humanos , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia
3.
Front Chem ; 8: 184, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32266211

RESUMO

Since Graphene discovery, their associated derivate nanomaterials, Graphene Oxide (GO) and reduced-GO were in the forefront of continuous developments in bio-nano-technology due to unique physical-chemical properties. Although GO nano-colloids (GON) were proposed as drug release matrix for targeting cancer cells, there is still a concern regarding its cytotoxicity issues. In this study, we report on the fabrication of functional GON bio-coatings by Matrix-Assisted Pulsed Laser Evaporation (MAPLE) to be used as drug carriers for targeting melanoma cells. We first performed a thorough in vitro cytotoxicity assay for comparison between GON and protein functionalized GON coatings. As functionalization protein, Bovine Serum Albumin (BSA) was non-covalently conjugated to GO surface. Safe concentration windows were identified in cytotoxicity tests by live/dead staining and MTS assays for five different human melanoma cell lines as well as for non-transformed melanocytes and human dermal fibroblasts. Hybrid GON-BSA nano-scaled thin coatings incorporating Dabrafenib (DAB) and Trichostatin A (TSA) inhibitors for cells bearing BRAFV600E pathway activating mutation were assembled on solid substrates by MAPLE technique. We further demonstrated the successful immobilization for each drug-containing GON-BSA assembling systems by evaluating cellular BRAF activity inhibition and histone deacetylases activity blocking, respectively. DAB activity was proven by the decreased ERK phosphorylation in primary melanoma cells (SKmel28 BRAFV600E cell line), while TSA effect was evidenced by acetylated histones accumulation in cell's nuclei (SKmel23 BRAF WT cell line). In addition, melanoma cells exposed to GON-BSA coatings with compositional gradient of inhibitors evidenced a dose-dependent effect on target activity. Such functional bio-platforms could present high potential for cell-biomaterial interface engineering to be applied in personalized cancer therapy studies.

4.
Curr Med Chem ; 27(6): 903-918, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31526343

RESUMO

There is permanent progress with the fabrication of smart bioactive surfaces that could govern tissue regeneration. Thin coatings of two or more materials with compositional gradient allow the construction of arrays with different chemical and physical features on a solid substrate. With such intelligent bio-platforms, cells can be exposed to a tissue-like biomimetic micro-environment with precise characteristics that directs cells fate towards specific phenotypes. We have introduced combinatorial matrix-assisted pulsed laser evaporation (C-MAPLE) as an alternative approach for the fabrication in a single-step process of either organic or inorganic thin and nanostructured coatings with variable composition. A continuous reciprocal gradient of two biomolecules can be achieved by C-MAPLE with discrete areas exhibiting physicochemical specificity that modulates intracellular signaling events. Herein, we present a review of the current combinatorial laser strategies and methods for fabricating thin organic and inorganic films with compositional gradient with emphasis on the surface influence on cell responsiveness. In particular, the specific biological potential of surface functionalization with thin coatings of biopolymers, proteins and drugs will be discussed. Laser deposition combinatorial processes are considered an emerging unconventional technology that can be widely applied to produce composite multilayers and micro-patterns for faster cell colonization and tissue engineering.


Assuntos
Nanoestruturas , Engenharia Tecidual , Biomimética , Materiais Revestidos Biocompatíveis , Lasers
5.
Nanomaterials (Basel) ; 8(8)2018 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-30065197

RESUMO

Glass is an alternative solution to polymer for the fabrication of three-dimensional (3D) microfluidic biochips. Femtosecond (fs) lasers are nowadays the most promising tools for transparent glass processing. Specifically, the multiphoton process induced by fs pulses enables fabrication of embedded 3D channels with high precision. The subtractive fabrication process creating 3D hollow structures in glass, known as fs laser-assisted etching (FLAE), is based on selective removal of the laser-modified regions by successive chemical etching in diluted hydrofluoric acid solutions. In this work we demonstrate the possibility to generate embedded hollow channels in photosensitive Foturan glass volume by high repetition rate picosecond (ps) laser-assisted etching (PLAE). In particular, the influence of the critical irradiation doses and etching rates are discussed in comparison of two different wavelengths of ultraviolet (355 nm) and visible (532 nm) ranges. Fast and controlled fabrication of a basic structure composed of an embedded micro-channel connected with two open reservoirs, commonly used in the biochip design, are achieved inside glass. Distinct advantages such as good aspect-ratio, reduced processing time for large areas, and lower fabrication cost are evidenced.

6.
J Inorg Biochem ; 183: 1-8, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29525694

RESUMO

The chemistry, structure and morphology of the implant surface have a great influence on the integration of an implant material with bone tissue. In this work, we applied Combinatorial Matrix-Assisted Pulsed Laser Evaporation (C-MAPLE) to deposit gradient thin films with variable compositions of Sr-substituted hydroxyapatite (SrHA) and Zn-substituted ß-tricalcium phosphate (ZnTCP) on Titanium substrates. Five samples with different SrHA/ZnTCP composition ratios were fabricated by a single step laser procedure. SrHA was synthesized in aqueous medium, whereas ZnTCP was obtained by reaction at high temperature. Both powders were separately suspended in deionized water, frozen at liquid nitrogen temperature and used as targets for C-MAPLE experiments, which proceed via simultaneous laser vaporization of two distinct material targets. X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy analyses confirmed that the coatings contain the same crystalline phases as the as-prepared powder samples, with a homogeneous distribution of the two phosphates along deposited thin films. Human osteoclast precursor 2T-110 and human osteoblast-like cells MG63 were co-cultured on the coatings. The results indicate that osteoblast viability and production of osteocalcin were promoted by the presence of ZnTCP. On the other hand, SrHA inhibited osteoclastogenesis and osteoclast differentiation, as demonstrated by the observed increase of the osteoprotegerin/RANKL ratio and decrease of the number of TRAP-positive multinucleated cells when increasing SrHA amount in the coatings. The results indicate that the possibility to tailor the composition of the coatings provides materials able to modulate bone growth and bone resorption.


Assuntos
Fosfatos de Cálcio/química , Hidroxiapatitas/química , Osteoblastos/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Estrôncio/química , Fosfatos de Cálcio/farmacologia , Linhagem Celular , Técnicas de Cocultura , Humanos , Hidroxiapatitas/farmacologia , Microscopia Eletrônica de Varredura , Osteoblastos/ultraestrutura , Osteoclastos/ultraestrutura , Espectrometria por Raios X , Estrôncio/farmacologia , Difração de Raios X , Zinco/química
7.
ACS Appl Bio Mater ; 1(5): 1667-1676, 2018 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34996216

RESUMO

Cancer cells undergo dramatic morphology changes when migrating in confined spaces narrower than their diameter during metastasis, and thus it is necessary to understand the deformation mechanism and associated molecular events in order to study tumor progression. To this end, we propose a new biochip with three-dimensional (3D) polymer nanostructures in a closed glass microfluidic chip. "Ship-in-a-bottle" femtosecond laser processing is an exclusive technique to flexibly create 3D small details in biochips. The wavefront correction by the spatial light modulator significantly improves the fabrication resolution of this technique. The device could then accommodate defect-free 3D biomimetic nanoconfigurations for the evaluation of prostate cancer cell migration in confined spaces. Specifically, polymeric channels with widths of ∼900 nm, which is more than one order of magnitude smaller than the cell size, are integrated by femtosecond laser inside glass channels. The cells are responsive to an in-channel gradient of epidermal growth factor and can migrate a distance greater than 20 µm. After migration, the cells suffer partial cytokinesis, followed by fusion of the divided parts back into single cell bodies.

8.
Acta Biomater ; 55: 481-492, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28434979

RESUMO

Design of new osteoinductive biomaterials to reproduce an optimized physiological environment capable of recruiting stem cells and instructing their fate towards the osteoblastic lineage has become a priority in orthopaedic surgery. This work aims at evaluating the bioactivity of BMP combined with human plasma fibronectin (FN/BMP) delivered in solution or coated onto titanium-hydroxyapatite (TiHA) surfaces. Herein, we focus on the comparison of in vitro osteogenic efficacy in mouse C2C12 pre-osteoblasts of three BMP members, namely: BMP-2, BMP-6 and BMP-7. In parallel, we evaluated the molecular binding strength between each BMP with FN using the Surface Plasmon Resonance (SPR) technology. The affinity of BMPs for FN was found totally different and dependent on BMP type. Indeed, the combination of FN with BMP-2 on TiHA surfaces potentiates the burst of gene-mediated osteogenic induction, while it prolongs the osteogenic activity of BMP-6 and surprisingly annihilates the BMP-7 one. These results correlate with FN/BMP affinity for TiHA, since BMP-6>BMP-2>BMP-7. In addition, by analyzing the osteogenic activity in the peri-implant environment, we showed that osteoinductive paracrine effects were significantly decreased upon (FN/BMP-6), as opposed to (FN/BMP-2) coatings. Altogether, our results support the use of FN/BMP-6 to develop a biomimetic microenvironment capable to induce osteogenic activity under physiological conditions, with minimum paracrine signalization. STATEMENT OF SIGNIFICANCE: The originality of our paper relies on the first direct comparison of the in vitro osteogenic potential of three osteogenic BMPs (BMP-2, -6 and -7) combined with native human plasma fibronectin delivered in solution or coated by laser transfer onto titanium hydroxyapatite surfaces. We confirm that BMP association with fibronectin enhances the osteogenic activity of BMP-2, -6 and -7, but with essential discrepancies, depending on the BMP member, and in agreement with the affinity of BMPs for fibronectin. Moreover, we bring elements to explain the origin of the BMP-2 medical life-threatening side-effects by analyzing in vitro paracrine effects. Finally, this work supports the alternative use of FN/BMP-6 to induce osteogenic activity under physiological conditions, with minimum side effects.


Assuntos
Materiais Biomiméticos , Proteína Morfogenética Óssea 2 , Proteína Morfogenética Óssea 6 , Proteína Morfogenética Óssea 7 , Materiais Revestidos Biocompatíveis , Durapatita , Fibronectinas , Osteoblastos/metabolismo , Titânio , Animais , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Proteína Morfogenética Óssea 2/química , Proteína Morfogenética Óssea 2/farmacologia , Proteína Morfogenética Óssea 6/química , Proteína Morfogenética Óssea 6/farmacologia , Proteína Morfogenética Óssea 7/química , Proteína Morfogenética Óssea 7/farmacologia , Linhagem Celular , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Durapatita/química , Durapatita/farmacologia , Fibronectinas/química , Fibronectinas/farmacologia , Humanos , Camundongos , Osteoblastos/citologia , Titânio/química , Titânio/farmacologia
9.
Sci Rep ; 6: 39617, 2016 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-28000781

RESUMO

The design of mesoporous carbon materials with controlled textural and structural features by rapid, cost-effective and eco-friendly means is highly demanded for many fields of applications. We report herein on the fast and tailored synthesis of mesoporous carbon by UV and IR laser assisted irradiations of a solution consisting of green phenolic resins and surfactant agent. By tailoring the UV laser parameters such as energy, pulse repetition rate or exposure time carbon materials with different pore size, architecture and wall thickness were obtained. By increasing irradiation dose, the mesopore size diminishes in the favor of wall thickness while the morphology shifts from worm-like to an ordered hexagonal one. This was related to the intensification of phenolic resin cross-linking which induces the reduction of H-bonding with the template as highlighted by 13C and 1H NMR. In addition, mesoporous carbon with graphitic structure was obtained by IR laser irradiation at room temperature and in very short time periods compared to the classical long thermal treatment at very high temperatures. Therefore, the carbon texture and structure can be tuned only by playing with laser parameters, without extra chemicals, as usually required.

10.
Nanoscale ; 7(22): 10111-22, 2015 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-25981107

RESUMO

A novel one-pot laser-assisted approach is reported herein for the synthesis of ordered carbons with embedded cobalt nanoparticles. The process is based on a UV pulsed laser exposure of an ethanolic solution consisting of green carbon precursors, a structure directing agent and a cobalt salt. Very short irradiation times (5 to 30 min) are only required to polymerize and cross-link carbon precursors (i.e. phloroglucinol and glyoxylic acid) independent of a catalyst presence. The influence of three metallic salts (acetate, nitrate and chloride) on the phenolic resin and carbon characteristics (structure, texture and particle size/distribution) was systematically studied. When exposed to UV laser, the metallic salt exhibited a strong influence on the particle size and distribution in the carbon matrix rather than on the textural carbon properties. Using cobalt acetate, very small (3.5 nm) and uniformly dispersed particles were obtained by this simple, fast and green one-pot synthesis approach. An original combined (13)C CP-MAS and DP-DEC solid state NMR spectroscopy analysis allowed to determine the structure of phenolic resins as well as the location of the cobalt salt in the resin. Complementarily, the (1)H solid-state and relaxation NMR provided unique insights into the rigidity (cross-linking) of the phenolic resin and dispersion of the cobalt salt. The magnetic properties of cobalt nanoparticles were found to be size-dependent: large Co nanoparticles (∼50 nm) behave as bulk Co whereas small Co nanoparticles are superparamagnetic.

11.
J Colloid Interface Sci ; 448: 1-7, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25706198

RESUMO

Both strontium and zoledronate (ZOL) are known to be useful for the treatment of bone diseases associated to the loss of bone substance. In this work, we applied an innovative technique, Combinatorial Matrix-Assisted Pulsed Laser Evaporation (C-MAPLE), to deposit gradient thin films with variable compositions of Sr-substituted hydroxyapatite (SrHA) and ZOL modified hydroxyapatite (ZOLHA) on Titanium substrates. Compositional gradients were obtained by simultaneous laser vaporization of the two distinct material targets. The coatings display good crystallinity and granular morphology, which do not vary with composition. Osteoblast-like MG63 cells and human osteoclasts were co-cultured on the thin films up to 21 days. The results show that Sr counteracts the negative effect of relatively high concentration of ZOL on osteoblast viability, whereas both Sr and ZOL enhance extracellular matrix deposition. In particular, ZOL promotes type I collagen production, whereas Sr increases the production of alkaline phosphatase. Moreover, ZOL exerts a greater effect than Sr on osteoprotegerin/RANKL ratio and, as a consequence, on the reduction of osteoclast proliferation and activity. The deposition method allows to modulate the composition of the thin films and hence the promotion of bone growth and the inhibition of bone resorption.


Assuntos
Substitutos Ósseos/química , Materiais Revestidos Biocompatíveis/química , Difosfonatos/química , Hidroxiapatitas/química , Imidazóis/química , Estrôncio/química , Substitutos Ósseos/metabolismo , Linhagem Celular , Sobrevivência Celular , Materiais Revestidos Biocompatíveis/metabolismo , Técnicas de Cocultura , Difosfonatos/metabolismo , Humanos , Hidroxiapatitas/metabolismo , Imidazóis/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteoclastos/citologia , Osteoclastos/metabolismo , Próteses e Implantes , Estrôncio/metabolismo , Ácido Zoledrônico
12.
ACS Appl Mater Interfaces ; 7(1): 911-20, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25485841

RESUMO

The lifetime of bone implants inside the human body is directly related to their osseointegration. Ideally, future materials should be inspired by human tissues and provide the material structure-function relationship from which synthetic advanced biomimetic materials capable of replacing, repairing, or regenerating human tissues can be produced. This work describes the development of biomimetic thin coatings on titanium implants to improve implant osseointegration. The assembly of an inorganic-organic biomimetic structure by UV laser pulses is reported. The structure consists of a hydroxyapatite (HA) film grown onto a titanium substrate by pulsed-laser deposition (PLD) and activated by a top fibronectin (FN) coating deposited by matrix-assisted pulsed laser evaporation (MAPLE). A pulsed KrF* laser source (λ = 248 nm, τ = 25 ns) was employed at fluences of 7 and 0.7J/cm(2) for HA and FN transfer, respectively. Films approximately 1500 and 450 nm thick were obtained for HA and FN, respectively. A new cryogenic temperature-programmed desorption mass spectrometry analysis method was employed to accurately measure the quantity of immobilized protein. We determined that less than 7 µg FN per cm(2) HA surface is adequate to improve adhesion, spreading, and differentiation of osteoprogenitor cells. We believe that the proposed fabrication method opens the door to combining and immobilizing two or more inorganic and organic materials on a solid substrate in a well-defined manner. The flexibility of this method enables the synthesis of new hybrid materials by simply tailoring the irradiation conditions according to the thermo-physical properties of the starting materials.


Assuntos
Materiais Revestidos Biocompatíveis/química , Fibronectinas/química , Titânio/química , Biomimética , Osso e Ossos/citologia , Adesão Celular , Linhagem Celular , Proliferação de Células , Durapatita/química , Humanos , Lasers , Espectrometria de Massas , Teste de Materiais , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Compostos Orgânicos/química , Osseointegração , Osteoblastos/citologia , Próteses e Implantes , Desenho de Prótese , Ligação Proteica , Regeneração , Espectrofotometria , Células-Tronco/citologia , Propriedades de Superfície , Raios Ultravioleta
13.
Biofabrication ; 6(3): 035010, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24867882

RESUMO

There is increased interest in smart bioactive materials to control tissue regeneration for the engineering of cell instructive scaffolds. We introduced combinatorial matrix-assisted pulsed laser evaporation (C-MAPLE) as a new method for the fabrication of organic thin films with a compositional gradient. Synchronized C-MAPLE of levan and oxidized levan was employed to assemble a two-compound biopolymer film structure. The gradient of the film composition was validated by fluorescence microscopy. In this study, we investigated the cell response induced by the compositional gradient using imaging of early osteoblast attachment and analysis of signalling phosphoprotein expression. Cells attached along the gradient in direct proportion to oxidized levan concentration. During this process distinct areas of the binary gradient have been shown to modulate the osteoblasts' extracellular signal-regulated kinase signalling with different propensity. The proposed fabrication method results in the preparation of a new bioactive material, which could control the cell signalling response. This approach can be extended to screen new bioactive interfaces for tissue regeneration.


Assuntos
Materiais Revestidos Biocompatíveis/química , Técnicas Eletroquímicas/métodos , Osteoblastos/citologia , Engenharia Tecidual/instrumentação , Alicerces Teciduais/química , Proliferação de Células , Materiais Revestidos Biocompatíveis/síntese química , Técnicas Eletroquímicas/instrumentação , MAP Quinases Reguladas por Sinal Extracelular , Frutanos/química , Humanos , Lasers , Osteoblastos/enzimologia , Transdução de Sinais , Propriedades de Superfície
14.
J Inorg Biochem ; 107(1): 65-72, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22178667

RESUMO

Octacalcium phosphate (OCP) is a promising alternative to hydroxyapatite as biomaterial for hard tissue repair. In this study we successfully applied Matrix Assisted Pulsed Laser Evaporation (MAPLE) to deposit Mg and Sr doped OCP (MgOCP and SrOCP), as well as OCP, thin films on titanium substrates. OCP, Mg-substituted and Sr-substituted OCP were synthesized in aqueous medium, then were suspended in deionised water, frozen at liquid nitrogen temperature and used as targets for MAPLE experiments. The depositions were carried out using a KrF* excimer laser source (λ=248 nm, τ(FWHM)=25 ns) in mild conditions of temperature and pressure. The results of X-ray diffraction, infrared spectroscopy, scanning electron microscopy and energy dispersive spectroscopy investigations revealed that the OCP thin films are deposited in the form of cauliflower-like aggregates and droplets, as well as crystal fragments, with a homogeneous distribution of magnesium and strontium on the surface of the coatings. Human osteoblast-like MG-63 cells were cultured on the different biomaterials up to 14days. MgOCP and SrOCP coatings promote osteoblast proliferation and differentiation with respect to OCP. Under these experimental conditions, the production of procollagen-type I, transforming growth factor-ß1, alkaline phosphatase and osteocalcin indicated that the level of differentiation of the cells grown on the different coatings increased in the order OCP

Assuntos
Fosfatos de Cálcio/química , Materiais Revestidos Biocompatíveis/síntese química , Magnésio/química , Membranas Artificiais , Estrôncio/química , Adesão Celular , Diferenciação Celular , Proliferação de Células , Forma Celular , Células Cultivadas , Materiais Revestidos Biocompatíveis/química , Humanos , Lasers , Microscopia Eletrônica de Varredura , Nanoestruturas/ultraestrutura , Osteoblastos/metabolismo , Osteoblastos/fisiologia , Osteoblastos/ultraestrutura , Faloidina/metabolismo , Difração de Pó , Biossíntese de Proteínas , Propriedades de Superfície , Difração de Raios X
15.
Biomacromolecules ; 12(6): 2251-6, 2011 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-21520921

RESUMO

Synthesis of nanostructured thin films of pure and oxidized levan exopolysaccharide by matrix-assisted pulsed laser evaporation is reported. Solutions of pure exopolysaccharides in dimethyl sulfoxide were frozen in liquid nitrogen to obtain solid cryogenic pellets that have been used as targets in pulsed laser evaporation experiments with a KrF* excimer source. The expulsed material was collected and assembled onto glass slides and Si wafers. The contact angle studies evidenced a higher hydrophilic behavior in the case of oxidized levan structures because of the presence of acidic aldehyde-hydrogen bonds of the coating formed after oxidation. The obtained films preserved the base material composition as confirmed by Fourier transform infrared spectroscopy. They were compact with high specific surface areas, as demonstrated by scanning electron and atomic force microscopy investigations. In vitro colorimetric assays revealed a high potential for cell proliferation for all coatings with certain predominance for oxidized levan.


Assuntos
Materiais Revestidos Biocompatíveis/síntese química , Frutanos/química , Nanoestruturas/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/metabolismo , Dimetil Sulfóxido/química , Frutanos/metabolismo , Vidro/química , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Lasers , Teste de Materiais , Microscopia de Força Atômica , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Oxirredução , Silício/química , Soluções , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
16.
J Biomed Mater Res B Appl Biomater ; 96(2): 218-24, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21210500

RESUMO

Al(2) O(3) substrates with controlled porosity were manufactured from nanosized powders obtained by plasma processing. It was observed that when increasing the sintering temperature the overall porosity was decreasing, but the pores got larger. In a second step, Ce stabilized ZrO(2) doped hydroxyapatite coatings were pulsed laser deposited onto the Al(2) O(3) substrates. It was shown that the surface morphology, consisting of aggregates and particulates in micrometric range, was altered by the substrate porosity and interface properties, respectively. TEM studies evidenced that Ce stabilized ZrO(2) doped HA particulates ranged from 10 to 50 nm, strongly depending on the Al(2) O(3) porosity. The coatings consisted of HA nanocrystals embedded in an amorphous matrix quite similar to the bone structure. These findings were congruent with the increased biocompatibility and bioactivity of these layers confirmed by enhanced growing and proliferation of human mesenchymal stem cells.


Assuntos
Materiais Revestidos Biocompatíveis/química , Durapatita , Células-Tronco Mesenquimais/citologia , Alicerces Teciduais/química , Óxido de Alumínio , Proliferação de Células , Cério , Humanos , Teste de Materiais , Porosidade , Propriedades de Superfície , Zircônio
17.
J Biomed Mater Res A ; 96(2): 384-94, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21171158

RESUMO

The sheltered transfer and immobilization of rabbit anti-human antiserum immunoglobulin G (IgG) by matrix-assisted pulsed laser evaporation (MAPLE) are reported. The iced targets submitted to laser irradiation consisted of 0.2-2 mg/mL IgG blended or not with lipid (L-α-phosphatidylcholine dipalmitoyl) dissolved in distilled water-based saline buffer. Thin IgG coatings were obtained at room temperature onto glass, fused silica, or silicon substrates. Ten thousand subsequent laser pulses of 0.33, 0.5, or 0.67 J/cm(2) fluence were applied for the synthesis of each sample. Morphology and composition of the thin films were studied by optical, scanning, and atomic force microscopy and Fourier transformed infrared spectrometry. Optical labeling methods such as spectrofluorimetry and fluorescence microscopy were selected to verify the biosensor transduction principle because of their high sensitivity for detecting low amounts of antigen (IgG). Protein immobilization to the substrate surface was demonstrated for all obtained structures after immersion in the donkey anti-rabbit secondary antibody solution. The IgG transfer and immobilization onto substrates were improved by addition of lipid to MAPLE solutions.


Assuntos
Técnicas Biossensoriais/métodos , Proteínas Imobilizadas/metabolismo , Imunoglobulina G/metabolismo , Lasers de Excimer , Animais , Humanos , Imunoglobulina G/ultraestrutura , Lipídeos/farmacologia , Microscopia de Força Atômica , Microscopia de Fluorescência , Coelhos , Espectroscopia de Infravermelho com Transformada de Fourier
18.
Biomaterials ; 30(31): 6168-77, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19692118

RESUMO

We applied Matrix Assisted Pulsed Laser Evaporation (MAPLE) in order to synthesize alendronate-hydroxyapatite thin films on titanium substrates. Alendronate-hydroxyapatite composite nanocrystals with increasing bisphosphonate content (0, 3.9, 7.1%wt) were synthesized in aqueous medium. Then, they were suspended in deionised water, frozen at liquid nitrogen temperature and used as targets for MAPLE experiments. The depositions were conducted with a KrF* excimer laser source (l=248nm, t(FWHM)=25ns) in mild conditions of temperature and pressure. The obtained thin films had a good crystallinity, which slightly decreases with the increase of alendronate content, and exhibited a porous-like structure. Osteoblast-like MG63 cells and human osteoclasts were cultured on the thin films up to 14 days. In the presence of alendronate, MG63 cells displayed a normal morphology, increased proliferation and higher values of differentiation parameters, namely type I collagen, osteocalcin, and osteoprotegerin/TNF-related activation-induced cytokine receptor ratio. In contrast, osteoclasts showed significantly reduced proliferation, and increased level of Caspase 3. Moreover, the coatings synthesized from hydroxyapatite at relatively high bisphosphonate content (7.1% wt) displayed a reduced production of Tumour Necrosis Factor alpha (TNF-alpha) and Interleukin 6 (IL-6), suggesting a down-regulatory role of alendronate on the inflammatory reaction. The successful deposition of alendronate modified hydroxyapatite thin films yields coatings with enhanced bioactivity, able to promote osteoblast differentiation and to inhibit osteoclast proliferation.


Assuntos
Alendronato/química , Materiais Biocompatíveis/química , Durapatita/química , Materiais Biocompatíveis/farmacologia , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Humanos , Microscopia Eletrônica de Varredura , Nanopartículas/efeitos adversos , Nanopartículas/química , Nanopartículas/ultraestrutura , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Titânio/química , Difração de Raios X
19.
World J Gastroenterol ; 15(24): 2980-6, 2009 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-19554650

RESUMO

"Psychosocial stress" is an increasingly common concept in the challenging and highly-demanding modern society of today. Organic response to stress implicates two major components of the stress system, namely the hypothalamic-pituitary-adrenal axis and the sympathetic nervous system. Stress is anamnestically reported by patients during the course of disease, usually accompanied by a decline in their overall health status. As the mechanisms involving glucocorticoids and catecholamines have been deciphered, and their actions on immune cell function deeper understood, it has become clear that stress has an impact on hepatic inflammatory response. An increasing number of articles have approached the link between psychosocial stress and the negative evolution of hepatic diseases. This article reviews a number of studies on both human populations and animal models performed in recent years, all linking stress, mainly of psychosocial nature, and the evolution of three important liver-related pathological entities: viral hepatitis, cirrhosis and hepatocellular carcinoma.


Assuntos
Hepatopatias/psicologia , Estresse Psicológico/psicologia , Animais , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/fisiopatologia , Carcinoma Hepatocelular/psicologia , Hepatite Crônica/fisiopatologia , Hepatite Crônica/virologia , Humanos , Sistema Hipotálamo-Hipofisário/fisiologia , Inflamação/imunologia , Inflamação/fisiopatologia , Hepatopatias/imunologia , Hepatopatias/fisiopatologia , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/fisiopatologia , Neoplasias Hepáticas/psicologia , Sistema Hipófise-Suprarrenal/fisiologia , Prognóstico , Estresse Psicológico/fisiopatologia , Sistema Nervoso Simpático/fisiologia , Sistema Nervoso Simpático/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...